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Rotational Kinematics

Until now, we have seen how we can summarize motion about a straight line whether it was uniform motion
or uniformly accelerated motion. However, it is not always that we get to experience such motions in nature.
Look at the skies for instance. Birds may travel in a curved path and even literally looking t the sky, the moon
orbits the Earth. Such motions are not motions about a straight line. Such motions about a curve are called
rotational motion.

Understanding Rotation

To first understand circular motion(a type of rotational motion), we have to understand the type of motion.
In linear motion, for instance, we say an object moves if it changes its position linearly within a span of time.
In rotational motion, it is no different. An object is said to rotate, if it changes its relative motion from the
reference point of its motion. In rotational motion, our reference point is called the axis of rotation. Thus,
when we study if a point is rotating we study how far it has traveled away from its axis of rotation.

X

By convention, let’s define the direction of the rotational motion using the Right Hand Rule. To do this, we
line up the thumb of our right hand along the line of the axis and the direction where the rest of the fingers
curl is the direction of our rotation.

For example;

� On the top left rotational motion in the figure above, the axis is oriented into the page, that means,
when we use the right hand rule, we see that it rotates about the Z-axis(-k̂ specifically) and it rotates on
the XY plane(clockwise).

� On the top right rotational motion in the figure above, the axis is oriented out of the page, that means,
when we use the right hand rule, we see that it rotates about the Z-axis(k̂ specifically) and it rotates on
the XY plane(counterclockwise).

� On the bottom left rotational motion in the figure above, the axis is oriented downwards, that means,
when we use the right hand rule, we see that it rotates about the Y-axis(-ĵ specifically) and it rotates on
the XZ plane(goes into the page on the left and out of the page on the right).

� On the bottom right rotational motion in the figure above, the axis is oriented to the right, that means,
when we use the right hand rule, we see that it rotates about the X-axis(ĵ specifically) and it rotates on
the YZ plane(goes out of the page on the top and into the page on the bottom).

Thus, now we can see that we only need to see the orientation of our axis to see how the object in a rotational
motion moves.
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Circular Motion

It is one of the simplest forms of rotational motion. It is a motion of an object about a circle(that is, the axis
of rotation passes through the center.) Let’s take a point on the circumference of the circle and study it as it
rotates. Its distance from the axis doesn’t change at all(it is r-radius of the circle at all times), however, we see
it moving. Thus, to signify this type of rotation, we instead use angular measures. Look at the figure below,
for instance:

As the object moves from point A to point B on the circumference of the circle, it has deflected its from its
initial position by an angle of ∆θ, while it is still equally as far from its axis of rotation. Thus, to say that
our object has rotated is the same as saying that it changed its relative orientation from the axis. Thus, as
we discussed displacement as being an objects change in position linearly, we call these change of orientation
relative to the axis an angular displacement(∆θ). To explain how fast an object is rotating, our how fast it
is changing its orientation, we study the rate of its change in orientation that is:

rate of ∆θ =
∆θ

∆t

The above quantity is called angular velocity and it is the time rate of change in angular displacement, and we
denote it using the Greek letter Omega(ω).

ω =
∆θ

∆t

The SI-unit of angular displacement is Radian(rad) and the SI-unit of angular velocity is Radian per sec-
ond(rad/sec). However, we can use multiple other units to describe these quantities. For example, we can use
degrees and revolutions to describe angular displacement.

1 rev = 2πrad

1 rad =
1800

π
... thus,

10 =
π rad

180

Similarly as linear velocity changes, we can also have a situation in which the angular velocity is changing. We
call this rate of change of angular velocity the angular acceleration(α).

Uniform Circular Motion and Uniformly Accelerated Circular Motion

Uniform Circular Motion is a type of circular motion in which the angular velocity stays constant(∆ω = 0),
that is, the angular acceleration of the object in motion is zero(α = 0). In that case, we have the following:

ω =
∆θ

t

We have seen above that θ =
S

r
, let’s try to see the relationship between v and ω.

ω =
∆θ

t

ω =
∆
S

r
t

=
∆
S

t
r

ω =
v

r

Similarly, for acceleration:

α =
∆ω

t
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α =
∆
v

r
t

=
∆
v

t
r

α =
a

t

Now, we can discuss Uniformly Accelerated Circular Motion - similarly as in uniformly accelerated motion,
the angular acceleration of an object in rotational motion stays constant(∆α = 0). In that case, we can use
the equations of uniformly accelerated motion by substituting with the angular equivalents of the physical
quantities.

ωf = ωi + αt

θ = ωit+
αt2

2

θ = ωf t−
αt2

2

2αθ = ω2
f − ω2

i

θ =
(ωf + ωi)

2

When discussing motion, we have seen that we can use calculus to study physical quantities associated with it.

For example,

ω =
∆θ

∆t

When using calculus, we have the following:

ω =
dθ

dt

Thus, to find θ in terms of ω, we use integration:

dθ = ωdt

θ =

∫
ωdt

Doing the same for the acceleration, we have the following:

α =
∆ω

∆t
=

dω

dt

Thus,
dω = αdt

ω =

∫
αdt

Centripetal Acceleration

For an object moving about a circle, the velocity changes instantaneously even when it is rotating in a uniform
circular motion. That is, because as an object rotates although its speed may be the same, it changes its
direction instantaneously, thus we can safely assume that it is accelerating. Whenever an object is rotating with
a constant angular speed, the net force acting on it is called centripetal force and the acceleration associated
with it is called centripetal acceleration. Understanding the proof for centripetal acceleration here is optional,
but highly recommended to be read.

Let’s consider an object is rotating on the XY plane as shown above. The position of this object at any point
on its motion is given by:

r = xî+ yĵ
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r = rcosθî+ rsinθĵ

We have seen earlier that:

v =
dr

dt
=

d(rcosθî+ rsinθĵ)

dt
=

d(rcos(ωt)î+ rsin(ωt)ĵ)

dt

When we derivate the above equation, we get the following:

v =
dr

dt
= −rωsin(ωt)î+ rωcos(ωt)ĵ

To find the acceleration, we derivate the above expression one more time with respect to t.

a =
dv

dt
=

d(−rωsin(ωt)î+ rωcos(ωt)ĵ)

dt

We then get the following:
a = −rω2cos(ωt)î− rω2sin(ωt)ĵ

For a unit vector r̂, we know from our our knowledge of vectors that:

r̂ =
r

r
=

rcosθî+ rsinθĵ

r
= cosθî+ sinθĵ

r̂ = cosθî+ sinθĵ = cos(ωt)î+ sin(ωt)ĵ

Going back to our equation of acceleration:

a = −rω2cos(ωt)î+ rω2sin(ωt)ĵ

a = −rω2(cos(ωt)î+ sin(ωt)ĵ)

a = −rω2(r̂)

Or if we would like to express this in terms of tangential velocity, we have the following(since v = ωr):

a = −v2

r
(r̂)

What does the negative sign indicate?

We defined our vector r to be outwards from the center and hence the negative of that implies that it is
towards the center. Thus, centripetal acceleration is always acted towards the center.

For an object moving in a uniform circular motion, we know that it is not accelerating about its axis, that
is, α = 0. However, it has an acceleration towards the center(the centripetal acceleration - ac). Thus, when we
speak of the acceleration of an object while rotating constantly, we only talk about the centripetal acceleration.

Let’s instead consider an object in a uniformly accelerated circular motion, in this case, we have a chang-
ing centripetal acceleration at every instant while the angular acceleration is constant(∆α = 0). Thus, if talk
about an object in such motion, we are actually talking about the resultant acceleration on the object:

ac =
v2

r
= ω2r

While we have centripetal acceleration given by the above equation, it is also important to know that we have
tangential acceleration as a result of angular acceleration

at = rα

Thus, if we talk about the acceleration of such an object in motion, we talk about the resultant. Since tangential
acceleration(tangent) and centripetal acceleration(along the diameter) are always perpendicular, the resultant
could be found using the following:

a =
√
ac

2 + a2
t

a =
√
(ω2r)2 + (rα)2

When simplified, we get the following:

a = r
√

ω4 + α2

4



Rotational Dynamics

Torque

In this section, we will see interaction of bodies with other objects while rotating and effects of those interactions.
Let’s start with the simplest case: turning. While studying linear motion, we have seen that the cause of motion
is force and it is a result of interaction between objects. The rotational equivalent of force is called torque and
it depends on three things, one - the amount of force used, two - the distance from the axis of rotation, and
three - the inclination of the force on the object(the angle between the force and the axis).

τ = rFsinθ

We can also use vector product to define force. It is the vector product between r and F(vector product, hence
the order is important). It is also important to notice why the equation below is in boldface while the above is
not. Recall that we represent vectors using boldface.

τ = r× F

Rotation as Seen by Newton’s Second Law

In linear motion, Newton’s second law states that if an object is accelerating, there is a net force on it or vice
versa. It is a bi-implication between force and acceleration.

F ⇐⇒ a

And we have the following as well:
F = ma

We have seen that Torque is the rotational equivalent of Force and angular acceleration is the rotational
equivalent of acceleration(linear). What is then, the rotational equivalent of mass?

τ =?×α

This unknown physical quantity is called the moment of inertia(I )

Moment of Inertia

In the simplest case possible, we have the following be true:

τ = rF

τ = r(ma)

τ = r(mrα)

τ = mr2α

Thus, our unknown in the above section is mr2. This physical quantity is called the rotational inertia of a point
mass rotating about an axis r meters far from it and with a mass m. We use the symbol I to denote moment
of inertia. Thus, for a point mass m rotating about an axis at a distance r, we have the moment of inertia be:

I = mr2

Thus, our torque equation becomes:
τ = Iα

Moment of inertia for a point mass and a mass-system with a simple structure is easy to compute. We just add
the individual moments to get the total moment of inertia of the system.

I =

n∑
1

mir
2
i

However, for objects such as a ball and a rod, we can use simple calculus to compute their moments of inertia.
Let’s start with a rod of mass M and length L that has a uniform linear mass density lambda.

It is imperative to know which axis we are using to rotate the rod to compute its moment of
inertia.
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Case 1 - rotation about its midpoint

λ =
M

L
=

dm

dr

We have seen that

I =

n∑
1

mir
2
i

That means, it is integration(since we sum up individual elements)

I =

∫ L
2

−L
2

r2dm

λ =
dm

dr
⇐⇒ dm = λdr

I =

∫ L
2

−L
2

r2(λdr)

I = λ
r3

3

∣∣∣∣∣
L
2

−L
2

I = λ
(L2 )

3

3
− λ

(−L
2 )3

3

I = λ
L3

12

Since λ =
M

L
, we then get:

I =
ML2

12

Case 2 - rotation about one end

I =

∫ L

0

r2dm

λ =
dm

dr
⇐⇒ dm = λdr

I =

∫ L

0

r2(λdr)

I = λ
r3

3

∣∣∣∣∣
L

0

I = λ
L3

3
− λ

03

3

I = λ
L3

3

Since λ =
M

L
, we then get:

I =
ML2

3

We see that the axis of rotation of an object actually matters and affects the moment of inertia of an object.
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0.1 Work Done and Rotational Kinetic Energy

We have seen in linear cases how to calculate work done and kinetic energy. While studying work, we had:

W = F · r

We can calculate work by substituting the rotational elements of F and r which are τ and θ respectively. Thus,

W = τ · θ

Similarly for kinetic energy, we have seen that:

KE =
1

2
mv2

When we substitute the rotational equivalents of m and v into the equation, we get the following:

KErot =
1

2
Iω2

An object rolling down an inclined plane, for example, has both a rotational kinetic energy and rotational
kinetic energy. The existence of one doesn’t imply or depend on the existence of the other.

Work-KE Theorem for Rotational Motion?

We have seen above that:
W = τθ

W = Iαθ

W = I(
w2

f − w2
i

2
)

W =
Iw2

f

2
− Iw2

i

2

W = ∆KErot
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