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Parallel Axis Theorem and Rotational Dynamics

Usually, it is common to do the math while rotating bodies about an axis passing through their centers of
masses. However, it might not always be the case. We have seen previously how to find the moment of inertia
while being rotated through different axes, but now, we will see how we can easily determine the moment of
inertia of a body through an axis parallel to the one passing through the center of mass.
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This proof tells us that if we know the moment of inertia of a rigid body rotating through its center of mass, we
can determine its moment of inertia through any axis parallel to the axis passing through the center of mass.
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For example, let’s see a rod rotating on one end instead of its center of mass. We have seen that for a
rod rotating through its center of mass, its moment of inertia is given by:
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If we choose its rotation axis to be one end of the rod, that makes the distance from the axis through the center
of mass to the axis through one end:
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Using parallel axis theorem, we can determine that the moment of inertia is:
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Angular Momentum

The angular momentum of a rigid object is defined as the product of the moment of inertia and the angular
velocity( or the cross product between r and linear momentum). It is analogous to linear momentum and is
subject to the fundamental constraints of the conservation of angular momentum principle if there is no external
torque on the object.

L = r×B or

L = Iω

We have seen earlier that for an object rotating with a net torque acting on it,

τnet = Iα

We also know that a net torque bi-implies angular acceleration, thus:

τnet = I(
ωf − ωi

∆t
)
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τnet∆t = ∆Iω

Thus,
τnet∆t = ∆L

The quantity τnet∆t is called the angular impulse of a body and is the rotational equivalent of impulse. We
see that if the net torque on a rigid body is 0, then its change in angular momentum is 0 meaning angular
momentum is conserved. Conservation of angular momentum is applicable in real life in multiple places. One
case is with ballet-dancers where they can change how they are dancing and that, as a result, affecting how fast
they are rotating.

An ice skater is spinning on the tip of her skate with her arms extended. Her angular momentum is conserved
because the net torque on her is very small that it is negligible. In image (b), her rate of spin increases greatly
when she pulls in her arms, decreasing her moment of inertia. The work she does to pull in her arms results in
an increase in rotational kinetic energy.
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